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1.Introduction
The existence of fair arbiters and formal specifications for them was a major topic of discussion at

the Workshop. One of the many results discussed is that it is possible to create a fair arbiter by

adding output delays to a mutual exclusion element [1]. This work builds on that result by

investigating the basic fairness properties of mutual exclusion elements and cQmbinations thereof.-

Rather than working with a particular mutual exclusion element, we abstract the behavior of a class of

such elements using a choice set model and a probabilistic specification of the choice inherent in

mutual exclusion. This allows us to capture the choice behavior of a mutual exclusion element in a

probabilistic structure containing finite and infinite traces. To analyze such structures we employ

techniques from the mathematical discipline of measure theory, and in prticular the measure

theoretic treatment of probability. The major result from this analysis -is that mutual exclusion

elements are fair under a strong probabilistic notion of fairness. This notion is similar to the standard

notions used in f11; its major advantage is that unlike the standard notions, it can be analyzed using

probability and measure theory techniques. A complete introduction and explanation of measure

theory is neither possible nor desirable in this context; the interested reader is urged to consult a

standard text such as [3]. Similarly we assume a familiarity with the common notions of fairness e

discussed in [1]

2. Modeling Mutual Exclusion Elements
A mutual exclusion element enforces mutual exclusion among grants to concurrent competing

requests for a shared resource. For the present we consider only two inpuit mutual exclusion

elements; generalizations to larger elements and arbiters containing multiple, mutual exclusion

elements will be discussed in a later section. To quantify the fairness of a mutual exclusion element,

there are three facets of its behavior that must be modeled:

" Which requests are granted in vihat order?

" What are the possible choices for each grant?

" For those grants that require a choice between requests, how is that choice made?

We use a choice set model for the first two items and a probabilistic model for the final itern; these

models are discussed in the following sections. For a two-input mutual exclut icnicmn wedticnote

the competing requests by r 0 and r1, arnd their corresponding grants by go and gl.
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2.1. Choice Sets

For an individual grant by a mutual exclusion element, we define the choice set to be the set of

outstanding requests that could be granted (including the request actually granted). To analyze

fairness we consider sequences of such grants and corresponding choice sets. Since previous work

has shown that infinite notions of fairness are necessary for delay-insensitive arbitration among

independent processes [1], we restrict our attention to infinite sequences. Therefore our choice set

model of an arbiter is the set of all infinite sequences of <grant,choice set>. We call such a sequence

an infinite choice sequence.

Because any two-input mutual exclusion el.ement makes dichotomous choices between competing

inputs, it must exhibit metastable behavior. One can intuitively understand metastable behavior as

that of a man sitting on a fence who cannot decide on which side of the fence the grass is greener

and therefore remains on the fence. The corresponding behavior of circuits (making no choice

because both are equally attractive) is real and has been demonstrated for synchronizers, arbiters,

and related circuits [2]. Just as the man will eventually get off the fence, a well-designed circuit will

eventually make a choice; there is no upper bound on the time required to make this choice, but it is

known to be exponentially distributed [4]. In the correspondence of our choice set model with any

actual mutual exclusion element, we require that any non-singleton choice set correspond to

metastable behavior.

2.2. Probabilistic Behavior

The final aspect of mutual exclusion element behavior that we need to model is the mechanism of

making choices among elements of a choice set. For this work we adopt the following simplifying

assumptions:

" In any sequence of choices, all choices are mutually independent.

" If a choice set contains both requests, then there are fixed probabilitit- for each request

(r0 ,r1 ) to be granted, and these probabilities are identical for all such choice sets.

These assumptions formalize our requirement that two-element choice sets correspond to inetastable

behavior, and model metastable behavior as essentially invariant over choices by fixing the

probabilities associated with each grant for a given mutual exclusion element. We denote these

probabilities by p0 and pi, and note that their sum must be 1. In practice one would expect these exit

or resolving probabilities to have values close to 0.5 [5].

Minor variations of these probahilities do not change our results, but drastic variations (such as one

of the probabilities becoming zero) invalidate the results. Chaney ha- obse\,cd short term

,,.. -
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dependencies in exit probabilities among choice sets for some flip-flops (6]; in the absence of long-

term dependencies we rely on the law of averages to remove any short-term effects from our analysis

of infinite sequences of choices (i.e. our first assumption above is justified in part because we are

interested only in infinite sequences of choices; it may be an unwarranted assumption for short finite

sequences). Finally, Sproull has noted that although these assumptions are reasonable for well-

designed mutual exclusion elements, there are pitfalls in designing MOS mutual exclusion elements

that may produce elements that violate these assumptions. The major potential problem is that every

wire in a MOS circuit has capacitance and therefore memory properties, including the wires used to -

cross-couple the inverting gates in a mutual exclusion element; the inadvertant introduction of

memory in these wires can produce a mutual exclusion element that unfairly favors one of its requests .

[7]. This is one of the many areas in which appropriate care and diligence are required on the part of

the circuit designer.

2.3. Fairness and its Analysis

To analyze the fairness of a mutual exclusion element we need consider only its choice behavior

when there is a choice to be made; therefore from any choice set sequence we are interested in the

unique subsequence consisting solely of choice sets containing both requests. Such a subsequence

is completely specified by the sequence of grants because all the choice sets are identical.

Furthermore, we are interested only in such subsequences which are infinite; if this subsequence is

finite, then after some finite point in the original sequence every request is immediately granted (i.e.

each choice set is of size 1, therefore that request is the granted request). This is certain to be fair

under an infinite notion of fairness as it excludes starvation. A consequence of our modeling

assumptions is that the likelihood of any such subsequence or collection thereof depends solely upon

the probabilities po and p, corresponding to the grant choices in the subsequence(s).

We now define fairness for both choice set sequences and mutual exclusion elements.
Definition 1: Weak Fairness for Sequences: A choice set sequence is fair iff any -

continually asserted request is eventually granted (i.e. the sequence is fair iff for any
request appearing in any choice set, EITHER the corresponding grant appears in that or a
subsequent sequence element, OR there is a subsequent choice set in which the request
does not appear).

When applied to our two-element choice set subsequences this requires that every request

eventually be granted in the subsequence; this is a stronger condition than requiring every request to

he granted in the corresponding original sequences. The following definition employs this stronger

condition.
Definition 2: Probabilistic Fairness for Mutual Exclisinn Elements A mutual

0 V
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exclusion element M is fair if the probability of unfair infinite two-element choice
subsequences in the space of all infinite two-element choice subsequences is zero.

Weak fairness for a mutual exclusion element requires that every continually asserted request

eventually be granted [1 ]; the above definition implies the similar condition that every continually

asserted request be granted with probability 1. The difference between these tWo conditions is that

the latter allows unfair behavior with probability zero. In a finite domain of possible behaviors, zero

probability behaviors cannot occur; for an infinite domain the corresponding condition is that within

any infinite sequence of randomly chosen behaviors from the domain, a behavior of probability zero

may appear at most finitely many times. Although the difference between this condition and an event

never occurring can be of great theoretical importance, we believe that it is relatively unimportant in

practice; in both cases the probability of a request not being granted'is zero, and' this is an adequate

notion of fairness for most purposes.

To establish our desired result on the fairness of mutual exclusion elements we need to consider the

probability of unfair infinite two-element choice sequences (an infinite set) within the space of all

infinite two-element choice sequences (another infinite set). Towards this end we now discuss

measure theory, which provides a rich set of tools for this task.

3. Meas ure Theory
Measure theory is a branch of mathematics concerned with functions that produce the 'size' of sets;

these set functions are called measures. A primitive example of a measure for intervals of the real

number line is the function that produces the length of the interval. Measures are most interesting

and most useful when the sets involved are infinite; this is precisely the situation that we are

considering in analyzing the fairness of mutual exclusion elements. The particular class of measures

we use are often called probability measures because they determinc Ole measure of a set by the

probability of the 'events' it contains. (The quoted terms are for the reader's intuition only; we do not

intend to provide formal definitions.)

3.1. Introduction

This section presents a quick introduction to measure theory abstracted from (3]. Further details

can be found there. This section may be skipped on first reading, as it is necessary only for the proof

of the main result.

Rings and a-rings are the mathema,-tical objects on which measures are defined,

Definition 3: Pings and algebras of Sets: A ring of st-t, is a nori -:mnpty classq 11 of
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sets which is closed under the formation of set unions and differences. Formally a non-
empty class R is a ring iff

For all E; R and IFE R, EU 1"E R and E -FE R

A a-ring of sets is a ring of sets closed under the formation of countable unions.

Formally a ring of sets S is a a-ring iff

If E.ES for i= 1,2... then U,E S

A(n) (o-)algebra is a (a-)ring that contains the union of all its elements. An equivalent
definition of a(n) (a-)algebra is that it is a (o-)ring that is closed under set complementation
of its individual elements.

This work relies primarily upon a-algebras;* the other rings and algebras are used to present the

definitions and results of measure theory in full generality.

A measure is a function that 'measures' the 'size' of sets in a ring. We now formally define this

concept:

Definition 4: Measure: An extended real valued function is a function whose range is

'R U { + c,-oc} where % denotes the real numbers.

A set function is a function whose domain is a class of sets (a ring or an algebra for

example).

An extended real valued set function /1 defined on a class E is countably additive if, for
every disjoint sequence {"} of sets in E whose union is also in E, we have

I.L(U~ 1 , n = (
n=1 .

A measure is an extended real valued, non-negative, and countably additive set function

p. defined on a ring R such that p( 0 ) = 0.

For an algebra A, let Xbe the union of all sets in the algebra. Then a measure p is totally

finite iff p(A) is finite.

Probability measures are always totally finite because the set . includes all possible 'events', and the

probability of at least one 'event' occurring is 1. (i.e. for a probability measure p, not only is p(A)

finite, but in fact it(,) = 1).

Any measure on any ring satisfies the following property, called countable subadditivity: for every

sequence {E,} of sets in ring R whose union is also in R the following is true:
. - ,,

The difference between this and countable additivity is that the sequence { 1 } was of disjoint sets in

the definition of countable addiivity, whereas the sequence i; this definition need not be d sioint; this
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results in the equality of countable additivity being replaced by the inequality contained in the above

definition.

Our desired result requires reasoning from probabilities of individual choices to probabilities of

sequences of choices. In a probability domain, we would state that different universes of choice are

involved; the corresponding objects in measure theory are called measure spaces.

Definition 5: Measure Spaces: A measurable space is a set X and a a-ring S of
subsets of X such that US = X. A subset F of X is measurable iff h, belongs to the (u-ring
S.

A measure space is a measurable space (AS) and a measure y on S. A measure space
(.V.S,tL) is totally finite iff the measure JL is totally finite.

In most cases it causes no confusion to denote a measure space or measurable space by the same

symbol as the underlying set X; if it is necessary to call attention to the specific space involved, we

use the notation (X,S) for measurable spaces and (X,S,fL) for measure spaces.

3.2. Product Measures

To prove Pur main result we define a measure space corresponding to a single choice, and then

extend to sequences of choices by taking cartesian products. The basic result we need from

measure theory is the existence of the product probability measures on cartesian products. To state

this theorem we need the following additional definitions and results. All results from measure theory

are stated here without proof; the proofs can be found in [3].
Theorem 6: If E is any class of sets, then the class of rings containing E has a unique

minimal element. In addition the class of a-rings containing E also has a unique minimal
element.

Definition 7: Generated Rings: In view of the preceding theorem, we define the ring
generated by E to be the unique minimal element of the class of rings containing E and
denote it by R(E). Similarly we define the a-ring generated by E to be the unique minimal
etmunt ul the class of a-rings containing E and denote it by S(E).

For the following if {.'} is an infinite sequence of sets, then X denotes their cartesian product,

0 '. On this basis we can define the remaining concepts that are needed to state the main

result of this section.

Definition 8: Measurability for Cartesian Products: For each set X' let S be a

,.-algebra of subsets of .'Y and let it , be a measure (mi S uii lhji ,. ) 1.

A rc,'tnrle is a set of the form "  .1 where 1 C .X for all and .1 k . or all but a

fimt(e niifnher of vailues of i. A .'.,Y ',,ute r,:ci:'' ' is a rc( H ';o ar .- lch nlch I is a

mn : , li,,suh'i f of V

,. -. N --% . "."". .
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A subset of 2X = H[ X 2' is measurable iff it belongs to the a-ring (which is actually a

a-algebra) generated by the class of measurable rectangles. We denote this a-algebra by

S = rTS 1  

.1

The next definition defines useful terms and notations for dealing with products-of measure spaces.

Definition 9: Cylinders: Let J be any subset of 1, the positive integers. Then two %

points (in A), x = (x1 ,x 2 .... ) and y=( ', ,y 2.... ) agree on .1 if x. =y ) for every j in J. We

write this as x-_y(J).

A set E in X is called a I-cylinder if x=y(J) implies that x and y either both belong or
both do not belong to E.

Finally we adopt the shorthand X'() =- =n-l X for non-negative n. This allows us to %

write any J-cylinder Eas x where / C ,'" for some n.

The following theorem is the principle measure-theoretic result necessary to prove our main

fairness result.

Theorem 10: Existence of Product Measures: If {X S,.,jL} is an infinite sequence

of totally finite measure spaces with p(A',) = I, then there exists a unique measure [ on

the a-algebra S = -I= S. with the property that for every measurable set E of the form
AXX(n), ._.

Ij4E) = Qt~1 X ... X JL)(A).

The measure jI is called the product of the given measures Ai, and the measure space

(X,S,L) is called the cartesian product of the given measure spaces.

4. Fairness of Mutual Exclusion Elements

4.1. The Basic Result

Our model characterizes mutual exclusion elements by their resolving probabilities from the

metastable state (p0,p). For real mutual exclusion elements one would expect these probabilities to

be close to 0.5, but it is unreasonable to assume that they are both exactly 0.5 for all mutual exclusion

elements; one would expect slight variations around 0.5. From a theoretical standpoint, the size of r

the interval around 0.5 that contains these probabilities is immaterial as long as zero i3 excluded. In

other words, expanding that interval from a small area around 0.5 to the entire open unit interval

between 0 and 1 changes neither the results nor their proofs, despite our expectation that the

probabilities do not lie in most of the interval. Excluding 0 and 1 as probahiiti,"s reqUires Phat the

metastable state exhibit an indeciion among pos ihlo choices. idmitting (I and 1 illows th ,;ilation

, 4%



in v~hich the, ;,ife request is almost alwva, s granted in any conflict, aimii thus the corresponding

mutAL3 exclusionm elemnent cannot possibly be fair Our main result is the following.
Theorem 1 1 : Any mutual exclusion element tor which p0 and p, are not zero is fair

uinder our mnodel anid -Itfinitions.
Proof: According to our definition of fairness, it is sufficient to show that the probability

of the set of unfair infinite two-element choice sequences is zero. For arbitrary positive
probabilities p 0 and p 1 (such that p 0 +pi = 1) we proceed as follows:

Corresponding to a single choice we define the choice measure space T ICt as:

" = (g0,g1 }

" T =f0,fc) ,,) gg1

C ~(0) = 0. itC((go)) = p0 ' ['±(({g1 ) P1.[,L({gO.g 1}) =p 0 + p1
Cis a totally finite measure space such that t1(CL 1 C corresponds directly to a single

choice fronl.he two-element choice set.

For all positive integers , let P =C. Now let (11 S. 1i) be the cartesian product of the P'

From theorem 10. vve conclude that the probability measure It on P' .s Nell defined. P' is
therefore the probability measure space of infinite tv.o-element choice sequences.

Lemmna: Every point in P1is measurable and has measure zero.

Proof, Consider an arbitrary one point subset of P, {x}. Ak is the infinite sequence
(x r .. where each {gc)g 1 ). For !.o > (. let .1 11.2, .11'fn. Then (X . ) defines

a I,1 -cylinder Fii which contains f x). More precisely we have

'7

where t'denotes the complement of the set /1. S is a ry-algebra, hence it is closed under
complemnentation and countable union by definition Since all ot the I:are in S it follows
from the equalities above that 1'xj c S. therefore f Q is measurable by definition.

To find the measure ot (.k) assume w ithout loss of generality that Kp. From theorem

10 and the definition of the measure space P', )v'e L'now that the measure of 11 is

[1 IL I Under our assumption on p0 and pl. this gqiantity IS hounided from :ibove by

(pc)7 Stice AC L'1 for all 'm we conclUde that

it ) lim inf ( r

Slince (p, J) i-3 a qoorrtric series wtt common ,.and !:m th :01!e .ini the
limit ai.,, identical and fquLJ to 0. As_ a ne,1Aiur IL m1ust I..- flnI ithcv. -rcfore

(LI A ) . ILeni
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Proof: An unfair infinite two element choice sequence must fail to grant some
continuously asserted request. The requires that after some finite point the sequence
becomes either go) repeating or g, repeating. Such sequences can be enumerated by
enumerating their prefixes (assuming the last element of the prefix is the first element of
the repeating portion) and casting out duplicates as part of the enumeration process.

0 Lemma. -

Since the set of unfair infinite two-element choice sequences is countable, it is a
countable disjoint union of the sets containing its individual elements. Each of these sets
has measure zero by the first lemma, therefore the entire set of unfair infinite two-element
choice sequences also has measure zero because any measure is countably additive.
This proves the theorem. El

4.2. Extension to Larger Elements

Having proved our main result for two input mutual exclusion elements, we now extend it to larger

mutual exclusion elements. The major new idea in this proof is the introduction of the excluded

choice sets, a useful class of sets that includes the Cantor Set. We informally discuss our

methodology before presenting the extended proof.

As the number of inputs increases, the complexity of our choice set model also increases. To avoid

changing the spirit of our approach it is necessary to extract subsequences corresponding to each of

the finitely many possible multi-element choice sets; each choice set corresponds to a different

measure space and product space, so the proof that the unfair sequences have measure zero must

now be performed once for each multi-element choice set. For choice sets containing exactly two

elements the proof has been given above, but for choice sets containing more than two elements, the

set of unfair sequences becomes uncountable requiring a slightly more sophisticated approach.

For choice sets containing three or more elements the main theorem above is st:;; true. but its proof

involves the infinite sequence analog of the Cantor Set .ind related sets: we refer to these as exc!uded

choice sets, and note that they are needed to prove the larger choice set versions of the lemmas in

the original proof.
Definition 12: Excluded Choice Sets: For a choice set C and an excluded set E C C,

the nh excluded choice set. X fr-) or n > 0. s the -,et of infinite sequencs of elements

from C such that no ckiment of E ,crurs in th, suih;equenc ,;t rting at thi nth position.
(The 1" excluded ,et frirhids the., c,'urrence of ,lenients of E, the i allo,.,v, them to occur
only Ili tile first two p(j. ,tons. etc )

One of th >.oe :sets cor r *,,nr ,s to th., , :themnatic. ,! fi/ kno, vn ,: C' (antor .,, The Cantor C"et

i. constriict,d hy takiiw ; 'i l n,t, fW i mi z r: " i1 Inclui'r< -" hiirrt: ,! 1.h nq it:. ,pen

% p

0g_.-
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middle third (the interval from 1/3 to 2/3 without endpoints), then deleting the open middle third from

the two intervals thus formed and so on ad infinitum. The Cantor Set is an uncountable nowhere

dense set of measure zero which contains all of its limit points; as such it is a common

counterexample in mathematics. In our framework the Cantor set corresponds to X: 0({01 ,2}) where .

each infinite sequence is considered as the ternary expansion of a number. in the unit interval '

between 0 and 1 inclusive. To our knowledge, this is the first use of the Cantor Set in computer

science.

'.

For an n-input mutual exclusion element, we denote the requests, grants and respective

probabilities by {r0 .. . r-l' {g 0 . gn.1}, and {p0 . .pn. 1}. We can now state and prove.the

generalized theorem.

Theorem 13: Any n-input mutual exclusion element for which all of {P0 .  pn.'} are

non-zero is fair under our model and definitions.

Proof: Based on our above discussion, it suffices to show that for any choice set
containing more than one element, the probability of unfair infinite choice sequences from
all the elements is zero. Let n be the size of an arbitrary such set, and without loss of
generality assume that it contains {g0 ' . gn. 1}. For arbitrary positive probabilities

n-1
Po'' .. ",Pn. } such that J Pi = 1 we proceed as follows:

Corresponding to a single choice we define the choice measure space C (C,Tiy) as:

* C ={go . gn-1

9 T = c(C),the powerset of C.

Spp.(A) =g.EA pifor AET.

C is a totally finite measure space such that [c(C) 1. C corresponds directly to a single

choice from the n-element choice set.

For all positive integers i, let P C. Now let (P.S.p) be the cartesian product of the P_.

Theorem 10 implies that the probability measure u. on 1) is well defined. P is therefore the
probability measure space of infinite n-element choice sequences.

Lemma: The set of unfair infinite n-element choice sequences is the countable non-

disjoint union of the of XE(C) where E ranges over all singleton sets consisting of exactly

one element from C and m ranges over the positive integers.

Proof: An unfair infinite n-element choice sequence must fail to grant seine

continuously asserted request, say r,. Such a sequence is in X{,(') where m is the

sequence position at which starvation begins.

; -'. ' " ...--. ' .'. -' ' '. ..' '- -" --." -' '- .' " .' ' '- " -"; " ;- ; " -; " .--' ';- -" " '. -: -.-- - ; -; .-" .-i-- . .'- -; . " ' " 0-



Conversely, any element of Xtgi}(C) for m positive must fail to grant the request r after

position m, and is therefore unfair. 0 Lemma.

Lemma: -' :

For gi E (go ..... g,.,) and m positive, Xm (C) is measurable in ) and has measure zero. Wk

Proof: For k > O, let ('k = {r,m+ 1 .... m+ k- 1}. Let Ek be the measurable Jk.cylinder

defined by excluding gi from the positions in Jk 'k contains the desired excluded choice

set. More precisely we have

= = (u= n'--
where ,A' denotes the complement of the set A. S is a a-algebra, hence it is closed under

complementation and countable union by definition. Since all of the E. are in S it follows
M m

from the equalities above that X{gi}(C) E S, therefore Xm i}(C) is measurable by definition.

To find its measure, let pj be the smallest probability in {po.  Pn.1}. From theorem 10

and the definition of the measure space P, we know that the measure of Ek is

li= .'c(C- {g}). This quantity is bounded from above by (1 .p)k• Since xi}(C)_Ek for

all k we conc!ude that

l(X(C)) nlim inf(l.p)k

{gI

Since (1 p.)k is a geometric series with common ratio 1-p and 0 < 1-p < 1, the lim inf and

the limit are identical and equal to 0. As a measure A must be non-negative, therefore

/.(XMi(Q = 0 Lemma.

From the above two lemmas we know that the set of unfair infinite n-element choice
sequences is a countable non-disjoint union of sets of measure 0. Since / is both non-
negative and countably subadditive, the set of unfair infinite n-element choice sequences
has measure 0. This proves the theorem. .

This completes the proof of our main fairness theorem for mutual exclusion elements with three or

more inputs. We now consider the implications of this result for (multi-input) arbiters implemented

with more than one mutual exclusion element.

%I

* •i

m 1 . ~ .%.*-
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5. Fairness of Multiple Input Arbiters
This section builds upon our fairness result for mutual exclusion elements to establish a general

fairness result for arbiters containing one or more mutual exclusion elements. As with our approach

to mutual exclusion elements, we first define an abstract model of such arbiters and then prove our

main result within the framework of that model. Throughout this section we are most interested in

asynchronous arbiters, i.e. those arbiters that impose no timing constraints on the presentation of the

requests among which they arbitrate, and continue to function in the absence of requests from one or

more connected processes. Our model and result are general enough to be applicable outside this

domain, but they do not apply to prioritized or daisy chain arbiters in which one request has absolute

priority over another. Such arbiters must favor a request of higher priority over one of lower priority;

this can result in starvation of the lower priority request.

5.1. Modeling Arbiters

Common design and implementation techniques for multiple input arbiters use multiple mutual

exclusion elements arranged in a hierarchical or ring formation. A request from one process using

the arbiter must then be granted by one or more of these elements before actually being granted by

the arbiter. We assume for this work that the arbiter has been correctly designed to implement mutual

exclusion and prevent internal deadlock.

The two main methodologies for designing multi-input arbiters using multiple (usually two-input)

mutual exclusion elements are the hierarchical and ring methodologies.

" A hierarchical arbiter uses multiple levels of mutual exclusion elements and surrounding
circuitry to reduce the number of requests to two which are finally arbitrated by a top-
level mutual exclusion element. Thus, a particular request entering the, arbiter must
obtain a fixed sequence of grants culminating in the grant from the top-level element to
receive a grant from the arbiter.

* A ring arbiter arranges mutual exclusion elements and surrounding circuitry in a ring
around which a single token or privilege travels. Possession of the token or privilege
gives a ring element the right to issue a grant to its attached request: ah.sence of the
token requires a request to obtain it, or a wait for it. The mttual exclusion .element is
needed in each ring element to arbitrate between holding the token to grant a pending
request at that element and passing the token ilong the ring so that some ue-ihcr pending
request may be granted. Thus a request must o')tain grants fi om all the mtuulIt ?xclusiin

elements required to pass the token around the ring to the correspondinj el.; ,ent, and
finally from that element itself. This -equence of required tris 1F.en!1- y' n he teken

position when the request is made: since the ;in(j has a fixed i nmber of ,.,m. ts, there
are finitely many possible positions and therefore finitely many such nc ;-. lees are
possible.

S,

,% % % -. % % * ,* - - % - % % %- % % ",;".. ' ,% % % .,% % . % %,% S
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Based on the above, our model of arbiters is that for each process connected to the arbiter there NO

are one or more finite sequences of mutual exclusion elements from which grants must be obtained in N-
order to cause the arbiter to grant a request from that process. For any particular request from a

process, exactly one of these sequences is appropriate; this sequence is determined by the state of

the arbiter (token position in the case of a ring) when the request is made. %

5.2. Fairness Result

The following definition of fairness is the probabilistic analog of the standard notion of weak "."

fairness. We again emphasize that these two notions are very similar; a fairness result using this

definition all but establishes weak fairness for arbiters.
Definition 14: Probabilistic Weak Fairness for Arbiters: An arbiter is

probabilistically weakly fair if any continually asserted request is eventual'ly granted with
pjrobability 1.

Using our model and this definition, we can prove the following result:
Theorem 15: All arbiters represented by our model are fair in the weak probabilistic

sense.
Proof: Let r be an arbitrary request and M1 .... Un the corresponding sequence of

mutual exclusion elements from which grants must be obtained to grant r. Our result on
mutual exclusion element fairness implies that M will eventually grant r with probability 1,
thus allowing it to be presented to M2, which eventually grants it with probability 1, etc.
Finally r is presented to Mn which eventually grants it with probability 1, thus causing the
arbiter to grant r. Multiplying these probabilities produces the result that r is eventually
granted with probability 1 as in the definition of probabilistic weak fairness. Since r was
arbitrary this establishes the theorem. -

We believe that this theorem essentially settles the weak fairness question for arbiters; essentially

any non-prioritized asynchronous arbiter that has or will be designed falls under our model, and is

therefore fair under our definition of fairness. This definition is close enough to weak fairness to

essentially settle the weak fairness question for arbiters.

6. Conclusion
In this paper we have considered the fairness of mutual exclusion elements. the most important

building block for any arbiter. A probabilistic choice set model has been introduced to capture the

choice behavior of such elements. Using this model on infinite sequences we have defined a

probabilistic notion of fairness, and shown that mutual exclusion elements are fair in general,

provided that a simple assumption about their probabilistic behavior is sali:;fid.. (Any well designed

mutual exclusion element does satisfy the assumption.) We have also ,xtended this result to
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establish the fairness of a wide class of arbiters including virtually all known non-prioritized multi-

input designs. This essentially settles the weak fairness question for non-prioritized arbiters; in

general such arbiters are fair in a sense that is very close to the standard notion of weak fairness.
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